深度学习正逐渐占领与“学习”相关的诸多研究领域,也对摄影测量这门学科造成冲击和促进。根据摄影测量学的定义:“利用光学像片研究被摄物体的形状、位置、大小、特性及相互位置关系”,其研究对象包括几何与语义。本文从这两个方面回顾和探讨深度学习目前的应用现状,并对其影响下的摄影测量的发展进行展望。在几何上,基于卷积神经元网络的学习架构已经广泛用于图像匹配、SLAM及三维重建,取得了较好的效果,但仍需进一步改进。在语义上,由于传统的手工设计方法未能将语义信息以工程化的形式确定并生成类似4D产品的各类语义“专题图”,语义部分长期受到忽视。深度学习强大的泛化能力、对任意函数的拟合能力及极高的稳定性,正使得专题图的自动制作成为可能。笔者通过道路网、建筑物、作物分类等应用实例,回顾已经取得的研究成果,并预计:利用光学像片生成高精度的语义专题图,在不远的未来即将实现;并可能成为摄影测量的一类标准产品。最后,针对几何和语义,分别介绍了笔者的两个相关研究:基于深度学习的航空图像匹配以及基于3D卷积神经元网络的精细农作物分类专题图自动提取。
来源:测绘学报
本内容为作者个人观点,不代表学测量网站立场.
如对本文有异议或投诉,联系bd@xueceliang.cn